Today's Webinar Will Begin Shortly:

Technology Trends Decarbonizing the Chemicals Industry

QUESTIONS? Use the questions box on your screen AUDIO ISSUES? Use the global dial-in number in your confirmation email

Anthony Schiavo Research Director

Agenda

- **1** Chemicals CO₂ snapshot
- 2 Three technologies driving decarbonization
- 3 Decarbonization to dematerialization

How does the chemicals industry stack up on emissions?

Gt CO2e 10 9 8 7 6 5 4 3 2 0 2000

Industry direct CO2 emissions

- Other industry
- Aluminium
- Pulp and paper
- Chemicals and petrochemicals
- Cement
- Iron and steel

Decarbonization will depend on both incremental and disruptive innovations

Total reduction: 273 Mt CO₂

CCUS: 95 Mt Plastic Recycling: 24 Mt Alternative feedstocks: 16 Mt

Let's pick three leading technologies and see how far we

get.

CO_2 to chemicals

Recycling

Bioplastics

Agenda

- 1 Chemicals CO₂ snapshot
- 2 Three technologies driving decarbonization
- 3 Decarbonization to dematerialization

Client confidential. Not for redistribution

8

CO₂ TO CHEMICALS Technology Overview

Description:

Catalytic or microbial conversion of CO₂ into useful chemicals and materials

Key Benefits:

- CO₂ utilization can provide the chemical industry with a fresh source of essential carbon feedstock in the transition from fossil resources.
- Highest decarbonization potential of any route.

Key drawbacks:

 CO₂ derived chemicals are uniformly more expensive and generally don't offer performance enhancements

CO₂ TO CHEMICALS Key players

CO₂ TO CHEMICALS Econic Technologies

Econic develops catalysts that react CO_2 with a range of epoxides to form polyols.

Econic claims differentiation through its tunable catalyst system.

Econic plans to sell its catalysts to large chemical companies.

LUX TAKE

Econic is smart to sell catalysts versus compete directly with polyol and polyurethane producers.

CO₂ TO CHEMICALS CO₂ to polyols will displace just 1 million metric tons of CO₂ in 2030 – the most of any CO₂ to chemicals technology

Global CO₂ utilization market

CO₂ TO CHEMICALS Technology outlook

Driving force

Great potential to decarbonize basic chemicals

Limiting Factor

High energy costs driven by poor conversion efficiency

Key Trend

Pivot towards partnerships with concrete players to sink emissions

Long term outlook

More fundamental R&D is needed at an academic level

PLASTIC RECYCLING Technology Overview

Description:

Conversion of waste plastic into useful products though mechanical, chemical, or thermal routes

Key Benefits:

 Simultaneously diverts waste from landfill while offering emissions reductions of up to 50% over conventional plastics

Key drawbacks:

- Conventional mechanical recycling is limited to serving non-food applications
- The real sustainability benefits of any emerging approaches – like pyrolysis – are not settled

PLASTIC RECYCLING **Key players**

1 PYRO Waste to	LYSIS oil			
I PLASTIC		Pyroil	Recycling 🧼 Technologies	RESPOLYFLOW*
VADXX	Revital	Polymer Research Technologies Ltd.		GREENMANTRA
RENEWLOGY				Arqlite
urjas	6	WASTECAPITAL	PRI	\forall

2 DEPO Waste to	LYMERIZA chemicals	TION		
ioniqa	CARBIOS Perrent Reynes Lifecycle			IDOOP
PET REFINE	your innovative partner	ac	IBM	EASTMAN
perpetual	💭 bp	بیبابک ایمانه		

PLASTIC RECYCLING Ioniqa

Developed a catalytically accelerated glycolysisbased depolymerization process.

Key component of Ioniqa's process is an inhouse-formulated magnetic particle catalyst.

Has finished the construction of its 10,000-ton input facility in Geleen, Netherlands, and now plans to demonstrate continuous operations for several months

• 🗲 LUX TAKE

Ioniqa's catalyst selectivity gives it an advantage in the race toward valorizing polyester textile waste streams: Its magnetic catalyst selectively targets PET even in the presence of other plastics.

PLASTIC RECYCLING Recycling capacity will grow to 73 million tons

Recycling capacity

Pyrolysis

- PS Mechanical
- PP Mechanical
- LDPE Mechanical
- HDPE Solvent
- HDPE Mechanical
- PET Depolymerization
- PET Mechanical

PLASTIC RECYCLING Technology outlook

Driving force

Meeting issues of emissions and waste simultaneously

Limiting Factor

Collecting and sorting waste

Key Trend

Chemical companies directly building mechanical recycling capacity

Long term outlook

Next gen catalytic pyrolysis is needed for widespread adoption

BIOPLASTICS Technology Overview

Description:

Conversion of sugars and waste biomass into conventional and novel plastics

Key Benefits:

- Reduce CO₂ emissions associated with oil feedstocks
- Some bioplastics can biodegrade, potentially reducing need for landfilling

Key Drawbacks:

- Costs are high, making drop-in replacements unattractive
- Biodegradation is does not work consistently

18

BIOPLASTICS Key Players

Genecis

капека

BIOPLASTICS Novomer

Targets poly(3-hydroxypropionate) (P3HP), a type of polyhydroxyalkanoate (PHA)

Claims its thermocatalytic route to PHA is cheaper and easier to scale than biological routes to PHAs

Aims to build an 80,000 tpa demonstration facility for P3HB by 2024

• 🗲 LUX TAKE

While high potential, scale up is likely to be a challenge – it remains to be seen if Novomer can create the market demand for it's scaled up products.

Bioplastics offer lower CO₂ footprints, but carry other risks

Energy Consumption

BIOPLASTICS Global bioplastic capacity will grow at a CAGR of 7.4% from 2 million MT in 2020 to 4.5 million in 2030

22

BIOPLASTICS Technology outlook

Driving force

Finding alternatives to petrochemical feedstocks

Limiting Factor

Costs and unclear sustainability credentials

Key Trend

Regulations on single use plastics create an opportunity

Long term outlook

Expect a split between Asia and the rest of the world

Technologies are falling short of ambitious decarbonization goals

Agenda

- 1 Chemicals CO₂ snapshot
- 2 Three technologies driving decarbonization
- **3** Decarbonization to dematerialization

Sustainability and volume growth are opposed to each other.

Companies will need to divorce revenue growth from volumes

Reduced consumption will become a key design goal in the future in order to save costs and improve sustainability.

KEY ACTIVITES

LUX TAKE: Digital technologies will be critical in creating the business models that decouple volumes and growth.

66

Only when the vessel actually comes into the dry dock and the water is removed, does the full extent of the repair work become apparent.

We felt we could improve that situation with our data.

– Michael Hindmarsh Incubator Lead (UK), AkzoNobel

DryDoQ Insights

Predicts hull surface condition (corrosion, fouling) to inform dry docking decisions

Key Takeaways

Decarbonization of chemicals is a complex task, requiring both incremental and disruptive innovation

2

Chemical companies need to learn to navigate upstream and downstream systems

3

New business models will emerge to decouple revenue growth and volume growth

Thank you

A link to the webinar recording will be emailed within 24-48 hours

UPCOMING WEBINARS

- August 24th: <u>Top Technology Innovations</u> Driving Growth in the Food and Beverage Industry
- September 21st: The Hospital of the Future

KEEP IN TOUCH

Email:	questions@luxresearchinc.com
Visit:	www.luxresearchinc.com
Read:	http://www.luxresearchinc.com/blog/
y	@LuxResearch
in	Lux Research

